Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Neurobiol Aging ; 137: 55-61, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422799

RESUMO

This study explored the associations between peripheral immunity with cerebral small vessel diseases. Older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative were investigated. Peripheral blood was obtained, and magnetic resonance imaging was performed to measure cerebral microbleeds (CMB), lacunar infarctions (LI), and white matter hyperintensities (WMH). Multivariable-adjusted regression models, linear mixed-effects models, and the Spearman correlations were used to evaluate the associations. At baseline, individuals with greater neutrophils (odds ratio [OR] =1.10, 95% confidence interval [CI] 1.00-1.20, p=0.042) and monocytes (OR=1.12, 95% CI 1.02-1.22, p=0.016) had higher WMH volume. On the contrary, a higher lymphocyte-to-monocyte ratio (LMR) was related to lower WMH volume (OR=0.91, 95% CI 0.82-1.00, p=0.041). Longitudinally, higher neutrophils (ρ=0.084, p=0.049) and NLR (ρ=0.111, p=0.009) predicted accelerated progression of WMH volume, while a greater LMR (ρ=-0.101, p=0.018) was linked to slower growth of WMH volume. Nevertheless, associations between peripheral immunity with CMB or LI were not observed at baseline and follow-up. Our study found that peripheral immune indexes could serve as convenient noninvasive biomarkers of WMH.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Demência , Substância Branca , Humanos , Idoso , Estudos Longitudinais , Doenças de Pequenos Vasos Cerebrais/patologia , Imageamento por Ressonância Magnética , Neuroimagem , Demência/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
2.
Sci Rep ; 14(1): 3402, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336856

RESUMO

The impact of small vessel disease (SVD) on stroke outcome was investigated either separately for its single features in isolation or for SVD sum score measuring a qualitative (binary) assessment of SVD-lesions. We aimed to investigate which SVD feature independently impacts the most on stroke outcome and to compare the continuous versus binary SVD assessment that reflects pronouncement and presence correspondingly. Patients with a first-ever anterior circulation ischemic stroke were retrospectively investigated. We performed an ordered logistic regression analysis to predict stroke outcome (mRS 3 months, 0-6) using age, stroke severity, and pre-stroke disability as baseline input variables and adding SVD-features (lacunes, microbleeds, enlarged perivascular spaces, white matter hyperintensities) assessed either continuously (model 1) or binary (model 2). The data of 873 patients (age 67.9 ± 15.4, NIHSS 24 h 4.1 ± 4.8) was analyzed. In model 1 with continuous SVD-features, the number of microbleeds was the only independent predictor of stroke outcome in addition to clinical parameters (OR 1.21; 95% CI 1.07-1.37). In model 2 with the binary SVD assessment, only the presence of lacunes independently improved the prediction of stroke outcome (OR 1.48, 1.1-1.99). In a post hoc analysis, both the continuous number of microbleeds and the presence of lacunes were independent significant predictors. Thus, the number of microbleeds evaluated continuously and the presence of lacunes are associated with stroke outcome independent from age, stroke severity, pre-stroke disability and other SVD-features. Whereas the presence of lacunes is adequately represented in SVD sum score, the microbleeds assessment might require another cutoff and/or gradual scoring, when prediction of stroke outcome is needed.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/complicações
3.
J Neural Transm (Vienna) ; 131(4): 377-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363389

RESUMO

OBJECTIVES: Acute encephalopathy (AE) has been described as a severe complication of COVID-19. Inflammation has been suggested as a pathogenic mechanism, with high-dose glucocorticoids (GC) showing a beneficial effect. Here, we retrospectively analyzed the clinical and radiological features in a group of COVID-19 AE patients who received GC treatment (GT) and in a non-treated (NT) group. METHOD: Thirty-six patients with COVID-19 AE (mean age 72.6 ± 11 years; 86.11% men) were evaluated for GC treatment. Twelve patients (mean age 73.6 ± 4.5 years; 66.67% men) received GC, whereas 24 patients who showed signs of spontaneous remission were not treated with GC (mean age 70.1 ± 8.6 years; 95.83% men). Differences in clinical characteristics and correlations with imaging features were explored. RESULTS: The GT group showed signs of vulnerability, with a longer hospitalization (p = 0.009) and AE duration (p = 0.012) and a higher hypertensive arteriopathy (HTNA) score (p = 0.022), when compared to NT group. At hospital discharge, the two groups were comparable in terms of clinical outcome (modified Rankin scale; p = 0.666) or mortality (p = 0.607). In our whole group analyses, AE severity was positively correlated with periventricular white matter hyperintensities (p = 0.011), deep enlarged perivascular spaces (p = 0.039) and HTNA score (p = 0.014). CONCLUSION: This study suggests that, despite signs of radiological vulnerability and AE severity, patients treated by high-dose GC showed similar outcome at discharge, with respect to NT patients. Imaging features of cerebral small vessel disease correlated with AE severity, supporting the hypothesis that brain structural vulnerability can impact AE in COVID-19.


Assuntos
COVID-19 , Doenças de Pequenos Vasos Cerebrais , Masculino , Humanos , Idoso , Feminino , Glucocorticoides/uso terapêutico , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , COVID-19/complicações , Doenças de Pequenos Vasos Cerebrais/patologia
4.
Sci Rep ; 14(1): 2741, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302529

RESUMO

Diabetes is associated with cognitive decline, but the underlying mechanisms are complex and their relationship with Alzheimer's Disease biomarkers is not fully understood. We assessed the association of small vessel disease (SVD) and amyloid burden with cognitive functioning in 47 non-demented older adults with type-2 diabetes from the Israel Diabetes and Cognitive Decline Study (mean age 78Y, 64% females). FLAIR-MRI, Vizamyl amyloid-PET, and T1W-MRI quantified white matter hyperintensities as a measure of SVD, amyloid burden, and gray matter (GM) volume, respectively. Mean hemoglobin A1c levels and duration of type-2 diabetes were used as measures of diabetic control. Cholesterol level and blood pressure were used as measures of cardiovascular risk. A broad neuropsychological battery assessed cognition. Linear regression models revealed that both higher SVD and amyloid burden were associated with lower cognitive functioning. Additional adjustments for type-2 diabetes-related characteristics, GM volume, and cardiovascular risk did not alter the results. The association of amyloid with cognition remained unchanged after further adjustment for SVD, and the association of SVD with cognition remained unchanged after further adjustment for amyloid burden. Our findings suggest that SVD and amyloid pathology may independently contribute to lower cognitive functioning in non-demented older adults with type-2 diabetes, supporting a multimodal approach for diagnosing, preventing, and treating cognitive decline in this population.


Assuntos
Doença de Alzheimer , Doenças de Pequenos Vasos Cerebrais , Transtornos Cognitivos , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Doenças Vasculares , Feminino , Humanos , Idoso , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Cognição , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Transtornos Cognitivos/patologia , Amiloide/metabolismo , Imageamento por Ressonância Magnética , Doenças Vasculares/patologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Encéfalo/metabolismo
5.
Neurology ; 102(5): e209148, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382000

RESUMO

BACKGROUND AND OBJECTIVES: Patients with cerebral small vessel disease (SVD) show a heterogenous clinical course. The aim of the current study was to investigate the longitudinal course of cognitive and motor function in patients who developed parkinsonism, dementia, both, or none. METHODS: Participants were from the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort study, a prospective cohort of patients with SVD. Parkinsonism and dementia were, respectively, diagnosed according to the UK Parkinson's Disease Society brain bank criteria and the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria for major neurocognitive disorder. Linear and generalized linear mixed-effect analyses were used to study the longitudinal course of motor and cognitive tasks. RESULTS: After a median follow-up of 12.8 years (interquartile range 10.2-15.3), 132 of 501 (26.3%) participants developed parkinsonism, dementia, or both. Years before diagnosis of these disorders, participants showed distinct clinical trajectories from those who developed none: Participant who developed parkinsonism had an annual percentage of 22% (95% CI 18%-27%) increase in motor part of the Unified Parkinson's Disease Rating Scale score. This was significantly higher than the 16% (95% CI 14%-18%) of controls, mainly because of a steep increase in bradykinesia and posture and gait disturbances. When they developed dementia as well, the increase in Timed Up and Go Test time of 0.73 seconds per year (95% CI 0.58-0.87) was significantly higher than the 0.20 seconds per year increase (95% CI 0.16-0.23) of controls. All groups, including the participants who developed parkinsonism without dementia, showed a faster decline in executive function compared with controls: Annual decline in Z-score was -0.07 (95% CI -0.10 to -0.05), -0.09 (95% CI -0.11 to -0.08), and -0.11 (95% CI -0.14 to -0.08) for participants who developed, respectively, parkinsonism, dementia, and both parkinsonism and dementia. These declines were all significantly faster than the annual decline in Z-score of 0.07 (95% CI -0.10 to -0.05) of controls. DISCUSSION: A distinct pattern in deterioration of clinical markers is visible in patients with SVD, years before the diagnosis of parkinsonism and dementia. This knowledge aids early identification of patients with a high risk of developing these disorders.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Demência , Transtornos Parkinsonianos , Humanos , Estudos de Coortes , Estudos Prospectivos , Equilíbrio Postural , Estudos de Tempo e Movimento , Transtornos Parkinsonianos/complicações , Demência/diagnóstico por imagem , Demência/etiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Cognição
6.
Alzheimers Dement ; 20(2): 858-868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800578

RESUMO

INTRODUCTION: We investigated whether retinal capillary perfusion is a biomarker of cerebral small vessel disease and impaired cognition among Black Americans, an understudied group at higher risk for dementia. METHODS: We enrolled 96 Black Americans without known cognitive impairment. Four retinal perfusion measures were derived using optical coherence tomography angiography. Neurocognitive assessment and brain magnetic resonance imaging (MRI) were performed. Multiple linear regression analyses were performed. RESULTS: Lower retinal capillary perfusion was correlated with worse Oral Symbol Digit Test (P < = 0.005) and Fluid Cognition Composite scores (P < = 0.02), but not with the Crystallized Cognition Composite score (P > = 0.41). Lower retinal perfusion was also correlated with higher free water and peak width of skeletonized mean diffusivity, and lower fractional anisotropy (all P < 0.05) on MRI (N = 35). DISCUSSION: Lower retinal capillary perfusion is associated with worse information processing, fluid cognition, and MRI biomarkers of cerebral small vessel disease, but is not related to crystallized cognition.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Vasos Retinianos , Humanos , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Negro ou Afro-Americano , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Perfusão , Imageamento por Ressonância Magnética , Biomarcadores , Doenças de Pequenos Vasos Cerebrais/patologia
7.
Hum Brain Mapp ; 45(1): e26548, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050769

RESUMO

White matter hyperintensities (WMHs) are well-established markers of cerebral small vessel disease, and are associated with an increased risk of stroke, dementia, and mortality. Although their prevalence increases with age, small and punctate WMHs have been reported with surprisingly high frequency even in young, neurologically asymptomatic adults. However, most automated methods to segment WMH published to date are not optimized for detecting small and sparse WMH. Here we present the SHIVA-WMH tool, a deep-learning (DL)-based automatic WMH segmentation tool that has been trained with manual segmentations of WMH in a wide range of WMH severity. We show that it is able to detect WMH with high efficiency in subjects with only small punctate WMH as well as in subjects with large WMHs (i.e., with confluency) in evaluation datasets from three distinct databases: magnetic resonance imaging-Share consisting of young university students, MICCAI 2017 WMH challenge dataset consisting of older patients from memory clinics, and UK Biobank with community-dwelling middle-aged and older adults. Across these three cohorts with a wide-ranging WMH load, our tool achieved voxel-level and individual lesion cluster-level Dice scores of 0.66 and 0.71, respectively, which were higher than for three reference tools tested: the lesion prediction algorithm implemented in the lesion segmentation toolbox (LPA: Schmidt), PGS tool, a DL-based algorithm and the current winner of the MICCAI 2017 WMH challenge (Park et al.), and HyperMapper tool (Mojiri Forooshani et al.), another DL-based method with high reported performance in subjects with mild WMH burden. Our tool is publicly and openly available to the research community to facilitate investigations of WMH across a wide range of severity in other cohorts, and to contribute to our understanding of the emergence and progression of WMH.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Substância Branca , Pessoa de Meia-Idade , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Acidente Vascular Cerebral/patologia , Algoritmos , Imageamento por Ressonância Magnética/métodos , Doenças de Pequenos Vasos Cerebrais/patologia
8.
Alzheimers Dement ; 20(2): 1397-1405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009395

RESUMO

INTRODUCTION: Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS: In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS: In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION: HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Substância Branca , Humanos , Idoso , Frequência Cardíaca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia
9.
J Neuroradiol ; 51(2): 155-167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37844660

RESUMO

Cerebral small vessel disease (CSVD) is characterized by widespread functional changes in the brain, as evident from abnormal brain activations during cognitive tasks. However, the existing findings in this area are not yet conclusive. We systematically reviewed 25 studies reporting task-related fMRI in five cognitive domains in CSVD, namely executive function, working memory, processing speed, motor, and affective processing. The findings highlighted: (1) CSVD affects cognitive processes in a domain-specific manner; (2) Compensatory and regulatory effects were observed simultaneously in CSVD, which may reflect the interplay between the negative impact of brain lesion and the positive impact of cognitive reserve. Combined with behavioral and functional findings in CSVD, we proposed an integrated model to illustrate the relationship between altered activations and behavioral performance in different stages of CSVD: functional brain changes may precede and be more sensitive than behavioral impairments in the early pre-symptomatic stage; Meanwhile, compensatory and regulatory mechanisms often occur in the early stages of the disease, while dysfunction/decompensation and dysregulation often occur in the late stages. Overall, abnormal hyper-/hypo-activations are crucial for understanding the mechanisms of small vessel lesion-induced behavioral dysfunction, identifying potential neuromarker and developing interventions to mitigate the impact of CSVD on cognitive function.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética , Encéfalo/patologia , Cognição , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia
10.
J Neurosci Methods ; 403: 110037, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38154663

RESUMO

BACKGROUND: Growing interest surrounds perivascular spaces (PVS) as a clinical biomarker of brain dysfunction given their association with cerebrovascular risk factors and disease. Neuroimaging techniques allowing quick and reliable quantification are being developed, but, in practice, they require optimisation as their limits of validity are usually unspecified. NEW METHOD: We evaluate modifications and alternatives to a state-of-the-art (SOTA) PVS segmentation method that uses a vesselness filter to enhance PVS discrimination, followed by thresholding of its response, applied to brain magnetic resonance images (MRI) from patients with sporadic small vessel disease acquired at 3 T. RESULTS: The method is robust against inter-observer differences in threshold selection, but separate thresholds for each region of interest (i.e., basal ganglia, centrum semiovale, and midbrain) are required. Noise needs to be assessed prior to selecting these thresholds, as effect of noise and imaging artefacts can be mitigated with a careful optimisation of these thresholds. PVS segmentation from T1-weighted images alone, misses small PVS, therefore, underestimates PVS count, may overestimate individual PVS volume especially in the basal ganglia, and is susceptible to the inclusion of calcified vessels and mineral deposits. Visual analyses indicated the incomplete and fragmented detection of long and thin PVS as the primary cause of errors, with the Frangi filter coping better than the Jerman filter. COMPARISON WITH EXISTING METHODS: Limits of validity to a SOTA PVS segmentation method applied to 3 T MRI with confounding pathology are given. CONCLUSIONS: Evidence presented reinforces the STRIVE-2 recommendation of using T2-weighted images for PVS assessment wherever possible. The Frangi filter is recommended for PVS segmentation from MRI, offering robust output against variations in threshold selection and pathology presentation.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Humanos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Gânglios da Base/diagnóstico por imagem
11.
Acta Neuropathol Commun ; 11(1): 204, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115109

RESUMO

Vascular risk factors such as chronic hypertension are well-established major modifiable factors for the development of cerebral small vessel disease (cSVD). In the present study, our focus was the investigation of cSVD-related phenotypic changes in microglia in human disease and in the spontaneously hypertensive stroke-prone rat (SHRSP) model of cSVD. Our examination of cortical microglia in human post-mortem cSVD cortical tissue revealed distinct morphological microglial features specific to cSVD. We identified enlarged somata, an increase in the territory occupied by thickened microglial processes, and an expansion in the number of vascular-associated microglia. In parallel, we characterized microglia in a rodent model of hypertensive cSVD along different durations of arterial hypertension, i.e., early chronic and late chronic hypertension. Microglial somata were already enlarged in early hypertension. In contrast, at late-stage chronic hypertension, they further exhibited elongated branches, thickened processes, and a reduced ramification index, mirroring the findings in human cSVD. An unbiased multidimensional flow cytometric analysis revealed phenotypic heterogeneity among microglia cells within the hippocampus and cortex. At early-stage hypertension, hippocampal microglia exhibited upregulated CD11b/c, P2Y12R, CD200R, and CD86 surface expression. Detailed analysis of cell subpopulations revealed a unique microglial subset expressing CD11b/c, CD163, and CD86 exclusively in early hypertension. Notably, even at early-stage hypertension, microglia displayed a higher association with cerebral blood vessels. We identified several profound clusters of microglia expressing distinct marker profiles at late chronic hypertensive states. In summary, our findings demonstrate a higher vulnerability of the hippocampus, stage-specific microglial signatures based on morphological features, and cell surface protein expression in response to chronic arterial hypertension. These results indicate the diversity within microglia sub-populations and implicate the subtle involvement of microglia in cSVD pathogenesis.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Ratos , Humanos , Camundongos , Animais , Microglia/metabolismo , Hipertensão/complicações , Hipertensão/patologia , Ratos Endogâmicos SHR , Doenças de Pequenos Vasos Cerebrais/patologia , Fenótipo
12.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833984

RESUMO

Cerebral small vessel disease (CSVD) is a significant cause of cognitive impairment (CI), disability, and mortality. The insufficient effectiveness of antihypertensive therapy in curbing the disease justifies the search for potential targets for modifying therapy and indicators supporting its use. Using a laser-assisted optical rotational cell analyzer (LORRCA, Mechatronics, The Netherlands), the rheological properties and deformability of erythrocytes before and after incubation with 10 µmol/L of L-arginine, the nitric oxide (NO) donor, blood-brain barrier (BBB) permeability assessed by dynamic contrast-enhanced MRI, clinical, and MRI signs were studied in 73 patients with CSVD (48 women, mean age 60.1 ± 6.5 years). The control group consisted of 19 volunteers (14 women (73.7%), mean age 56.9 ± 6.4 years). The erythrocyte disaggregation rate (y-dis) after incubation with L-arginine showed better performance than other rheological characteristics in differentiating patients with reduced NO bioavailability/NO deficiency by its threshold values. Patients with y-dis > 113 s-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in grey matter and normal-appearing white matter (NAWM). A test to assess changes in the erythrocyte disaggregation rate after incubation with L-arginine can be used to identify patients with impaired NO bioavailability. L-arginine may be part of a therapeutic strategy for CSVD with CI.


Assuntos
Lesões Encefálicas , Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Substância Branca , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Barreira Hematoencefálica/patologia , Lesões Encefálicas/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética , Óxido Nítrico , Substância Branca/patologia , Masculino
13.
Brain Res Bull ; 204: 110793, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863439

RESUMO

BACKGROUD: Emerging evidence suggests an overlap in the underlying pathways contributing to both cerebral small vessel disease (CSVD) and the neurodegenerative disease. Studies investigating the progression of CSVD should incorporate markers that reflect neurodegenerative lesions. OBJECTIVE: We aim to investigate whether Amide proton transfer (APT) can serve as a potential marker for reflecting vascular cognitive impairment (VCI). METHOD: Participants were categorized into one of three groups based on their Montreal Cognitive Assessment (MoCA) scores: normal control group (age,54.9 ± 7.9; male, 52.9%), mild cognitive impairment (MCI) group (age,55.7 ± 6.9; male, 42.6%), or vascular dementia (VaD) group (age,57.6 ± 5.5, male, 58.5%). One way analysis of variance was performed to compare the demographic and APT variables between groups. Multiple logistic regression analysis wwas constructed to examine the relationship between APT values and VCI grouping. A hierarchical linear regression model was employed to examine the associations between patients' demographic factors, imaging markers, APT values, and MoCA. RESULTS: The APT values of frontal white matter, hippocampus, amygdala, and thalamus were significantly different among different groups (p < 0.05). The APT values of frontal white matter, amygdala, and thalamus indicate a significant positive effect on MCI grouping. the APT values of frontal white matter, amygdala, and thalamus indicate a significant positive effect on VaD grouping. The demographic data, CSVD imaging markers and APT values can account for 5.1%, 20.1% and 27.7% of the variation in MoCA, respectively. CONCLUSION: APT imaging can partially identifying and predicting the occurrence of VCI.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Demência Vascular , Doenças Neurodegenerativas , Humanos , Masculino , Pessoa de Meia-Idade , Prótons , Amidas , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Demência Vascular/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia
14.
Stroke ; 54(11): 2853-2863, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814955

RESUMO

BACKGROUND: Proteins expressed by brain endothelial cells (BECs), the primary cell type of the blood-brain barrier, may serve as sensitive plasma biomarkers for neurological and neurovascular conditions, including cerebral small vessel disease. METHODS: Using data from the BLSA (Baltimore Longitudinal Study of Aging; n=886; 2009-2020), BEC-enriched proteins were identified among 7268 plasma proteins (measured with SomaScanv4.1) using an automated annotation algorithm that filtered endothelial cell transcripts followed by cross-referencing with BEC-specific transcripts reported in single-cell RNA-sequencing studies. To identify BEC-enriched proteins in plasma most relevant to the maintenance of neurological and neurovascular health, we selected proteins significantly associated with 3T magnetic resonance imaging-defined white matter lesion volumes. We then examined how these candidate BEC biomarkers related to white matter lesion volumes, cerebral microhemorrhages, and lacunar infarcts in the ARIC study (Atherosclerosis Risk in Communities; US multisite; 1990-2017). Finally, we determined whether these candidate BEC biomarkers, when measured during midlife, were related to dementia risk over a 25-year follow-up period. RESULTS: Of the 28 proteins identified as BEC-enriched, 4 were significantly associated with white matter lesion volumes (CDH5 [cadherin 5], CD93 [cluster of differentiation 93], ICAM2 [intracellular adhesion molecule 2], GP1BB [glycoprotein 1b platelet subunit beta]), while another approached significance (RSPO3 [R-Spondin 3]). A composite score based on 3 of these BEC proteins accounted for 11% of variation in white matter lesion volumes in BLSA participants. We replicated the associations between the BEC composite score, CDH5, and RSPO3 with white matter lesion volumes in ARIC, and further demonstrated that the BEC composite score and RSPO3 were associated with the presence of ≥1 cerebral microhemorrhages. We also showed that the BEC composite score, CDH5, and RSPO3 were associated with 25-year dementia risk. CONCLUSIONS: In addition to identifying BEC proteins in plasma that relate to cerebral small vessel disease and dementia risk, we developed a composite score of plasma BEC proteins that may be used to estimate blood-brain barrier integrity and risk for adverse neurovascular outcomes.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Demência , Humanos , Células Endoteliais/patologia , Estudos Longitudinais , Encéfalo/patologia , Biomarcadores/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Imageamento por Ressonância Magnética
15.
J Alzheimers Dis ; 95(3): 1133-1145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661877

RESUMO

BACKGROUND: Neurofilament light chain (NfL) is a marker of neuronal injury. Perivascular spaces (PVS) visible on magnetic resonance imaging (MRI) represent cerebral small vessel disease (CSVD) but their role as markers of neuronal injury needs further clarification. OBJECTIVE: To relate PVS burden according to brain topography and plasma NfL. METHODS: Framingham Heart Study (FHS) participants with brain MRI and NfL measurements were included. PVS were rated in the basal ganglia (BG) and centrum semiovale (CSO) using validated methods and categorized based on counts. A mixed region variable representing high burden PVS in either BG or CSO was assessed. Multivariable linear regression analyses were used to relate PVS burden to log-transformed NfL levels in models adjusted for age, sex, FHS cohort, time between MRI and clinic exam, and image view (model 1), vascular risk factors (model 2), and white matter hyperintensity volume, covert brain infarcts, and cerebral microbleeds (model 3). RESULTS: Among 1,457 participants (68.1±8.5 years, 45% males), NfL levels increased with higher PVS burden. Multivariable analysis showed an association of high PVS burden strictly in BG with NfL (ß= 0.117, 95% CI 0.014-0.221; p = 0.027), but attenuated in model 3. The associations were mainly in participants≥65 years (ß= 0.122, 95% CI 0.015-0.229, p = 0.026), women (ß= 0.156, 95% CI 0.024-0.288, p = 0.021), and APOE ɛ4 non-carriers (ß= 0.140, 95% CI 0.017-0.263, p = 0.026). CONCLUSIONS: The association of strictly BG high PVS burden with NfL suggests a role for PVS as markers of neuroaxonal injury, but our results are hypothesis generating and require further replication.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Filamentos Intermediários , Masculino , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Gânglios da Base/patologia , Estudos Longitudinais , Doenças de Pequenos Vasos Cerebrais/patologia
16.
Neurology ; 101(20): e1979-e1991, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37775315

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies reported that carriers of rare NOTCH3 variants comprised more than 10% of the general population and are susceptible to a heavy overall burden of cerebral small vessel disease while the injury patterns remain uncovered. This study aimed to investigate the imaging features in relation to rare NOTCH3 variants and the interaction between cortical atrophy and white matter lesions from a longitudinal view, with respect to spatial and dynamic patterns. METHODS: As part of a community-based cohort, we included participants with complete whole-exome sequencing and brain MRI in the baseline analysis. All participants were invited for a 5-year follow-up MRI, and those who did not complete the follow-up were excluded from the longitudinal analysis. NOTCH3 variants with minor allele frequency <1% in all 4 public population databases were defined as rare variants. We used general linear models to compare the volume of white matter hyperintensity (WMH) volume and brain parenchymal fraction between rare NOTCH3 variant carriers and noncarriers. In addition, we compared the WMH probability map and vertex-wise cortex maps at a voxel/vertex-wise level. RESULTS: A total of 1,054 participants were included in baseline analysis (13.56% carried rare NOTCH3 variants), among whom 661 had a follow-up brain MRI (13.76% carried rare NOTCH3 variants). Rare NOTCH3 variant carriers had a heavier white matter hyperintensity burden (1.65 vs 0.85 mL, p = 0.025) and had more extensive WMH distributed in the periventricular areas. We also found that rare NOTCH3 variant carriers were susceptible to worse cortical atrophy (ß = -0.004, SE = 0.002, p = 0.057, adjusted for age and sex). Cortical atrophy of multiple regions in the frontal and parietal lobes was related to white matter hyperintensity progression. DISCUSSION: Individuals with rare NOTCH3 variants have a distinct pattern of brain parenchymal damage related to CSVD. Our findings uncover the important genetic predisposition in age-related cerebral small vessel disease in the general population.


Assuntos
Lesões Encefálicas , Doenças de Pequenos Vasos Cerebrais , Substância Branca , Humanos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Lesões Encefálicas/patologia , Atrofia/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Receptor Notch3/genética
17.
Acta Neuropathol Commun ; 11(1): 128, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550790

RESUMO

Cerebral small vessel disease is characterised by decreased cerebral blood flow and blood-brain barrier impairments which play a key role in the development of white matter lesions. We hypothesised that cerebral hypoperfusion causes local hypoxia, affecting oligodendrocyte precursor cell-endothelial cell signalling leading to blood-brain barrier dysfunction as an early mechanism for the development of white matter lesions. Bilateral carotid artery stenosis was used as a mouse model for cerebral hypoperfusion. Pimonidazole, a hypoxic cell marker, was injected prior to humane sacrifice at day 7. Myelin content, vascular density, blood-brain barrier leakages, and hypoxic cell density were quantified. Primary mouse oligodendrocyte precursor cells were exposed to hypoxia and RNA sequencing was performed. Vegfa gene expression and protein secretion was examined in an oligodendrocyte precursor cell line exposed to hypoxia. Additionally, human blood plasma VEGFA levels were measured and correlated to blood-brain barrier permeability in normal-appearing white matter and white matter lesions of cerebral small vessel disease patients and controls. Cerebral blood flow was reduced in the stenosis mice, with an increase in hypoxic cell number and blood-brain barrier leakages in the cortical areas but no changes in myelin content or vascular density. Vegfa upregulation was identified in hypoxic oligodendrocyte precursor cells, which was mediated via Hif1α and Epas1. In humans, VEGFA plasma levels were increased in patients versus controls. VEGFA plasma levels were associated with increased blood-brain barrier permeability in normal appearing white matter of patients. Cerebral hypoperfusion mediates hypoxia induced VEGFA expression in oligodendrocyte precursor cells through Hif1α/Epas1 signalling. VEGFA could in turn increase BBB permeability. In humans, increased VEGFA plasma levels in cerebral small vessel disease patients were associated with increased blood-brain barrier permeability in the normal appearing white matter. Our results support a role of VEGFA expression in cerebral hypoperfusion as seen in cerebral small vessel disease.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Células Precursoras de Oligodendrócitos , Substância Branca , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Substância Branca/patologia , Hipóxia/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Front Cell Infect Microbiol ; 13: 1231541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496806

RESUMO

Background: Cerebral small vessel disease (CSVD) is a cluster of microvascular disorders with unclear pathological mechanisms. The microbiota-gut-brain axis is an essential regulatory mechanism between gut microbes and their host. Therefore, the compositional and functional gut microbiota alterations lead to cerebrovascular disease pathogenesis. The current study aims to determine the alteration and clinical value of the gut microbiota in CSVD patients. Methods: Sixty-four CSVD patients and 18 matched healthy controls (HCs) were included in our study. All the participants underwent neuropsychological tests, and the multi-modal magnetic resonance imaging depicted the changes in brain structure and function. Plasma samples were collected, and the fecal samples were analyzed with 16S rRNA gene sequencing. Results: Based on the alpha diversity analysis, the CSVD group had significantly decreased Shannon and enhanced Simpson compared to the HC group. At the genus level, there was a significant increase in the relative abundances of Parasutterella, Anaeroglobus, Megasphaera, Akkermansia, Collinsella, and Veillonella in the CSVD group. Moreover, these genera with significant differences in CSVD patients revealed significant correlations with cognitive assessments, plasma levels of the blood-brain barrier-/inflammation-related indexes, and structural/functional magnetic resonance imaging changes. Functional prediction demonstrated that lipoic acid metabolism was significantly higher in CSVD patients than HCs. Additionally, a composite biomarker depending on six gut microbiota at the genus level displayed an area under the curve of 0.834 to distinguish CSVD patients from HCs using the least absolute shrinkage and selection operator (LASSO) algorithm. Conclusion: The evident changes in gut microbiota composition in CSVD patients were correlated with clinical features and pathological changes of CSVD. Combining these gut microbiota using the LASSO algorithm helped identify CSVD accurately.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/psicologia
19.
J Neurol Sci ; 451: 120735, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499621

RESUMO

BACKGROUND: The paranasal sinus mucosal thickening, visible in magnetic resonance imaging (MRI), maybe a source of inflammation in microvessels, but its relationship with small vessel disease (SVD) is unclear. We reviewed the literature and analysed a sample of patients with sporadic SVD to identify any association between paranasal sinus opacification severity and SVD neuroimaging markers. METHODS: We systematically reviewed MEDLINE and EMBASE databases up to April 2020 for studies on paranasal sinus mucosal changes in patients with SVD, cerebrovascular disease (CVD), and age-related neurodegenerative diseases. We analysed clinical and MRI data from 100 participants in a prospective study, the Mild Stroke Study 3 (ISRCTN 12113543) at 1-3, 6 and 12 months following a minor stroke to test key outcomes from the literature review. We used multivariate linear regression to explore associations between modified Lund-Mackay (LM) scores and brain, white matter hyperintensities (WMH), enlarged perivascular spaces (PVS) volumes at each time point, adjusted for baseline age, sex, diabetes, hypercholesterolaemia, hypertension and smoking. RESULTS: The literature review, after screening 3652 publications, yielded 11 primary studies, for qualitative synthesis with contradictory results, as positive associations/higher risk from 5/7 CVD studies were contradicted by the two studies with largest samples, and data from dementia studies was equally split in their outcome. From the pilot sample of patients analysed (female N = 33, mean age 67.42 (9.70) years), total LM scores had a borderline negative association with PVS in the centrum semiovale at baseline and 6 months (B = -0.25, SE = 0.14, p = 0.06) but were not associated with average brain tissue, WMH or normal-appearing white matter volumes. CONCLUSION: The inconclusive results from the literature review and empirical study justify larger studies between PVS volume and paranasal sinuses opacification in patients with sporadic SVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Transtornos Cerebrovasculares , Seios Paranasais , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Masculino , Estudos Prospectivos , Doenças de Pequenos Vasos Cerebrais/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/complicações , Transtornos Cerebrovasculares/complicações , Imageamento por Ressonância Magnética , Seios Paranasais/patologia
20.
Neuropathol Appl Neurobiol ; 49(4): e12922, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37431095

RESUMO

AIMS: This study assesses the association of antihypertensive medication use on the severities of neuropathological cerebrovascular disease (CVD excluding lobar infarction) in older individuals. METHODS: Clinical and neuropathological data were retrieved for 149 autopsy cases >75 years old with or without CVD or Alzheimer's disease and no other neuropathological diagnoses. Clinical data included hypertension status, hypertension diagnosis, antihypertensive medication use, antihypertensive medication dose (where available) and clinical dementia rating (CDR). Neuropathological CVD severity was evaluated for differences with anti-hypertensive medication usage. RESULTS: Antihypertensive medication use was associated with less severe white matter small vessel disease (SVD, mainly perivascular dilatation and rarefaction), with a 5.6-14.4 times greater likelihood of less severe SVD if medicated. No significant relationship was detected between infarction (presence, type, number and size), lacunes or cerebral amyloid angiopathy and antihypertensive medication use. Only increased white matter rarefaction/oedema and not perivascular dilation was associated with Alzheimer's pathology, with a 4.3 times greater likelihood of reduced Aß progression through the brain if white matter rarefaction severity was none or mild. Antihypertensive medication use was associated with reduced Aß progression but only in those with moderate to severe white matter SVD. CONCLUSIONS: This histopathological study provides further evidence that antihypertensive medication use in older individuals is associated with white matter SVD and not with other CVD pathologies. This is mainly due to a reduction in white matter perivascular dilation and rarefaction/oedema. Even in those with moderate to severe white matter SVD, antihypertensive medication use reduced rarefaction and Aß propagation through the brain.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doenças de Pequenos Vasos Cerebrais , Hipertensão , Leucoencefalopatias , Substância Branca , Humanos , Idoso , Anti-Hipertensivos/uso terapêutico , Encéfalo/patologia , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/patologia , Substância Branca/patologia , Leucoencefalopatias/patologia , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Infarto/complicações , Infarto/patologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/tratamento farmacológico , Doenças de Pequenos Vasos Cerebrais/patologia , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...